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a b s t r a c t

A practical engineering noise control measure that can often be used for plate-like

structures is to construct them from perforates. This can dramatically reduce the sound

radiation from such structures. Here, a prediction model is developed to quantify this

effect. It is an extension of Laulagnet’s model for the radiation from an unbaffled plate,

over plate modes. The perforation is included in terms of a continuously distributed

surface impedance, which for moderately sized holes is predominantly inertial. Results

show that the radiation efficiency reduces, not only as the perforation ratio increases

but also as the hole size reduces for a given perforation ratio. Experimental validation is

given which shows a good agreement with the predictions. An approximate formula is

also proposed for the effect of perforation which corresponds well with the analytical

calculations up to half the critical frequency and could be used for an engineering

application to predict the noise reduction due to perforation. A model for the case of a

perforated plate embedded in an equally perforated baffle is also discussed for

comparison.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The vibration of engineering structures, particularly those consisting of thin plate-like members, can be a significant
source of noise in many situations. Noise control techniques are often focussed on reducing the amplitudes of vibration and
include damping treatments, vibration isolation and structural modification. However, it is sometimes also possible to
reduce the sound radiation of plate-like structures directly by constructing them from perforates. This technique is known
to be capable of achieving considerable noise reductions and has found many practical applications, including safety guard
enclosures over flywheels or belt drives and product collection hoppers [1]. Despite this, there appears to be a lack of
suitable models to determine the sound radiation from a vibrating perforated plate and to give quantitative guidance
concerning the design and effectiveness of perforation as a noise control measure.

Fahy and Thompson [2] developed a model for the sound radiation by plane bending waves propagating in an
unbounded, uniformly perforated plate. In this model the perforations are replaced by an equivalent continuous
impedance, based on the assumption that the hole size and separation are much smaller than the acoustic wavelength.
The acoustic impedance of each hole was represented by the analytical solution for wave propagation in a small circular
tube, similar to that proposed by Maa [3], and was dominated by the inertia of the air in the holes.

The model was then applied to the case of a simply supported rectangular plate, in the same way as for a solid plate set
in an infinite rigid baffle [4], by expanding the plate vibration in the wavenumber domain. Although this allowed the
radiation efficiency of a finite plate to be determined, it was based on the assumption that the baffle had the same
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impedance as the plate, which implied that the baffle was perforated in the same way as the plate. Thus the effect of plate
perforation could not be seen unambiguously.

An extension of this model was also considered in which the plate and the baffle had different impedances [2].
The relation between the pressures and normal velocities was derived in the wavenumber domain as a matrix problem and
solved by matrix inversion. This was applied to the one-dimensional case of the radiation from a perforated strip piston
and good results were found for the case where it is set in a rigid baffle. However, as the impedance of the baffle tends
towards that of the free medium, the matrix becomes near-singular giving erratic predictions. Moreover, expanding this
approach to a two-dimensional case, such as a rectangular plate, is found to lead to excessive computational effort [5].

The problem of the sound radiation from an unbaffled plate is, in general, more difficult to solve than for a plate set in an
infinite baffle, as the velocity is known only over the surface of the plate, whereas in the remainder of the plane the
pressure is known (zero) and the velocity is unknown. Although various analytical methods exist for determining the
sound radiation from an unbaffled flat plate [6–10], these are less well known and take much more computational effort
than for the baffled plate. Of the various approaches in the literature, that developed by Laulagnet [10] is particularly
relevant as it can be readily extended to the case of a perforated plate, as will be shown. Laulagnet’s approach [10] involves
solving the Kirchhoff–Helmholtz integral equation by expressing the plate displacement and also the pressure jump across
the plate as a sum of normal modes of the plate.

There are few other models for the radiation from perforated plates. Janssens and van Vliet [11] produced a purely
empirical model for the effect of perforation on the radiation efficiency of flat plates. This was intended for application to
components of steel railway bridges.

According to the author’s knowledge, the first analytical model of sound radiation from a vibrating perforated panel was
published by Takahashi and Tanaka [12]. They presented the acoustic coupling of a perforated plate using Maa’s impedance
model for the holes [3] and used this to study several problems, including the sound radiation from an infinite perforated
plate subjected to a point force. Their results suggested that the perforation affects the radiated power only below the
panel critical frequency, where the sound power was found to decrease as the perforation ratio was increased.

This basic model was then adopted in [13,14] which considered the radiation from a force-excited plate in the presence
of a perforated face plate, rigidly attached to the plate via a honeycomb spacer. A large reduction in sound radiation was
obtained due to perforation of the facing plate in the narrow frequency band around the resonance of the Helmholtz
resonator formed by the air cavity inside the honeycomb structure and the holes of the perforate.

There has been considerable interest recently in the performance of micro-perforated plates. These typically have holes
with diameters in the range 0.05–1.0 mm and perforation ratios of 0.5–1.5 percent. Models for micro-perforates [15–18]
are mostly aimed at predicting their acoustic absorption and use the impedance of Maa [3] to represent the holes. Due to
the small size of the holes viscous effects are important. In [17], sound absorption from a finite micro-perforated plate is
investigated where the effect of plate motion is included based on the approach from [12].

The effects of plate boundaries are expected to be important. Therefore, whereas Takahashi and Tanaka [12] consider a
vibrating perforated plate of infinite extent, in the present paper models are developed for the sound radiation from finite
perforated plates. The model from Fahy and Thompson [2] of a finite perforated plate set in an equally perforated infinite
baffle is first presented. Then, the model of Laulagnet [10] for the radiation from an unbaffled plate is extended to include a
surface impedance representing perforations. The results from these two models are compared. Experimental results are
also presented for a number of perforated plates, showing good agreement with the predictions. An approximate formula is
also derived from which the effect of perforation can be estimated for engineering application.

The paper focuses on perforated plates with hole diameters of the order of several millimetres, typically used in
engineering applications, rather than on micro-perforates. Consequently inertial effects will dominate over viscous effects
within the holes and the hole impedance can be represented simply by the inertial term, as used by Fahy and Thompson
[2]. Therefore the model as presented here is not directly applicable to the case of a micro-perforated plate where the hole
diameter is typically smaller than about 1 mm, although it could be readily extended to cover this case by including the
additional viscous terms in the impedance.
2. Theory

2.1. Hole acoustic impedance

Models for sound radiation from a perforated plate can be developed by introducing the impedance of the holes to
account for the change in pressure difference across the plate due to perforation. Consider first a single hole in a plate for a
given frequency o. The flow velocity through the hole vh is related to the pressure difference across the hole Dp by the
impedance of the hole, Zh

vh ¼
Dp

Zh
(1)
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The impedance Zh ¼ Zh,RþZh,I of a circular hole of diameter d0 is given by Maa [3]

Zh,R ¼
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where X0 ¼ ðd0=2Þðor=naÞ
1=2 in which r is the air density and na is the viscosity (which for air is 1.8�10�5 N s/m2), t is the

plate thickness and a dependence on time T of ejoT is assumed. The resistive or real part of the impedance Zh,R corresponds
to viscous effects of air–solid interaction, while the imaginary part Zh,I, termed the acoustic reactance, is inertial in nature.

In fact, although the pressure difference due to inertial forces is indeed proportional to the fluid motion vh, as indicated
in Eq. (1), the viscous forces are proportional to the relative motion of the fluid with respect to the plate [12]. Strictly,
therefore, it is not correct to use the above impedance for the case of a plate that is vibrating. Nevertheless, except for large
perforation ratios the motion of the fluid will usually be much greater than that of the plate and this difference can be
neglected.

Fig. 1 plots the real and imaginary parts of the acoustic impedance of 1 and 6 mm thick plates as a function of hole
diameter for three example frequencies. This shows that, as the hole diameter becomes smaller, the contribution of the
resistive component to the acoustic impedance becomes greater than that of the reactive component. Conversely, as the
hole diameter increases, the resistive contribution decreases rapidly. Hence, it can be seen that, for hole diameters greater
than about 1 mm, the reactive component dominates the acoustic impedance at frequencies of 100 Hz and greater.
Therefore for the purpose of the present study, where d0 is much greater than 1 mm, it can be assumed that the fluid
reaction in the holes is purely inertial (behaves like a mass). Hence the resistive component Zh,R will be neglected, leaving
only the reactive component Zh,I which can be simplified to

Zh ¼ Zh,I ¼ jro tþ
8

3p

� �
d0

� �
(4)

where the second term inside the bracket in Eq. (3) has been ignored as ð9þX2
0=2Þ�1=2

51. The second term in Eq. (4),
i.e. ð8=3pÞd0 corresponds to the end correction at both ends of the hole, which is proportional to an added mass in the
proximity of a moving piston [19]. This term will dominate for d0bt.

2.2. Mean particle velocity

In the presence of a distributed array of holes across the plate, the particle velocity at the plate surface is modified by
the fluid flow through the holes vf. The net particle velocity v formed by the combination of the normal velocity of the plate
v and the fluid motion vf is given by [12]

v ¼ vpð1�tÞþvf (5)
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Fig. 1. The magnitude of the real (thin lines) and imaginary (thick lines) parts of the acoustic impedance of a circular hole in (a) 1 mm thick plate and (b)

6 mm thick plate (� � �100 Hz, ��1 kHz, —5 kHz).
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where t is the perforation ratio (proportion of the plate area which is open). For a continuous distribution of holes with
perforation ratio t, the equivalent fluid velocity through the holes averaged locally over the plate area will be vf ¼ tvh and
the specific acoustic impedance of the distribution of holes will be zh ¼ Zh=t. This can also be written as

zh ¼ jrch (6)

where

h¼
k

t tþ
8

3p

� �
d0

� �
(7)

is the non-dimensional specific acoustic reactance, k¼o=c is the acoustic wavenumber and c is the speed of sound.

2.3. Baffled plate

2.3.1. Equally perforated baffle

Consider first a plane, harmonic bending wave of frequency o and wavenumber kx propagating in the x-direction in an
infinite plate. The specific acoustic impedance presented to the upper surface of the plate by the fluid ðz40Þ, za(kx), is given
by [4]

zaðkxÞ ¼
PðkxÞ

VðkxÞ
¼

or
ðk2�k2

x Þ
1=2

, jkxjrk (8)

where P and V are the complex acoustic pressure and complex plate velocity amplitudes, respectively. For jkxj4k, za(kx) is
imaginary (reactive) and a near-field is produced. Thus only jkxjrk is considered here to calculate the propagating waves
producing sound radiation.

For the case of a perforated plate, as shown in Fig. 2(a), following the method of [2] the difference between the
local pressures on the upper and lower surfaces of the plate drives fluid through the individual holes. In turn, these
pressures are modified by the flow through the holes. By symmetry, the pressure difference is Dp¼�2p. Considering the
holes as a continuous distribution, the equivalent fluid particle velocity vf(x), due to the flow through the holes can be
given by

vf ðxÞ ¼
�2pðxÞ

zh
(9)

Therefore the mean particle velocity v as in Eq. (5) can be written as

vðxÞ ¼ vðxÞð1�tÞ�2pðxÞ

zh
(10)

Since the plate is assumed infinite and the bending wave has a unique wavenumber kx, the plate and the equivalent
fluid particle velocity also have the same unique wavenumber in the x direction. Eq. (10) can thus be expressed as

V ðkxÞ ¼ VðkxÞð1�tÞ�
2PðkxÞ

zh
(11)

For the case of a finite perforated plate, Eq. (11) can still be applied provided that the rigid baffle shares the same
impedance, i.e. it must also be constructed with the same degree of perforation as the plate, as indicated in Fig. 2(b).
From here, using Eq. (8), the pressure P generated above the finite plate is

PðkxÞ ¼ V ðkxÞzaðkxÞ ¼ VðkxÞð1�tÞ�
2PðkxÞ

zh

� �
zaðkxÞ (12)
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Fig. 2. Analytical model of a perforated plate: (a) an infinite perforated plate and (b) a perforated plate set in an equally perforated baffle.
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Rearranging yields

PðkxÞ ¼
zhzaðkxÞð1�tÞ
zhþ2zaðkxÞ

VðkxÞ (13)

If the perforated panel is embedded in a solid rigid baffle (without perforation), then this will lead to a mixed boundary
impedance, see [2], for which Eq. (12) can no longer be applied.

Finally substituting Eq. (13) into Eq. (11) yields the ratio of the complex amplitudes of the combined normal velocity of
the plate and fluid flow through the holes (mean velocity) to that of the plate alone

V ðkxÞ

VðkxÞ
¼

1�t
1þ2zaðkxÞ=zh

(14)

Eq. (14) confirms that the sound radiation from the plate is reduced by introducing perforation to the plate.
As jzaðkxÞ=zhj-1, i.e. open area condition (absence of the plate), the ratio tends to zero so that flow through the holes
completely compensates the plate motion, while as zaðkxÞ=zh-0, i.e. the unperforated plate (absence of the holes), the ratio
tends to unity. The sound power radiated per unit area of the perforated plate can be calculated from

WpðkxÞ ¼
1
2RfPðkxÞV

�
ðkxÞg (15)

where * denotes the complex conjugate and R indicates the real part. By using the relation from Eq. (8) this yields

WpðkxÞ ¼
1
2 RfzaðkxÞV ðkxÞV

�
ðkxÞg ¼

1
2jV ðkxÞj

2 RfzaðkxÞg (16)

The ratio of sound power per unit area of the perforated plate to that of the unperforated plate is therefore given by

WpðkxÞ

WðkxÞ
¼

V ðkxÞ

VðkxÞ

�����
�����
2

¼
1

1þ4ðzaðkxÞ=jzhjÞ
2
¼

h2ð1�ðkx=kÞ2Þð1�tÞ2

4þh2ð1�ðkx=kÞ2Þ
, jkxjrk (17)

since zh is imaginary and za is real.
For a plane wave travelling with components in the x and y directions, k2

x can be replaced by the square of the resultant,
k2

xþk2
y . In terms of non-dimensional wavenumbers, it follows that Eq. (17) can therefore be written as

jXða,bÞj2 ¼
h2ð1�a2�b2

Þð1�tÞ2

4þh2ð1�a2�b2
Þ

, a2þb2r1 (18)

where a¼ kx=k and b¼ ky=k.

2.3.2. The acoustic sound power and radiation efficiency in terms of modal summation

From Eq. (17), the sound power from the perforated plate can be obtained from the sound power radiated by the solid
plate. The plate velocity can be considered as the summation of plate modes (m,n) which can be written as

vðx,yÞ ¼
X1

m ¼ 1

X1
n ¼ 1

umnjmnðx,yÞ (19)

where umn is the modal complex velocity amplitude and jmn is the mode shape function. For the case of a simply
supported plate with dimensions a� b, the mode shape jmn is the product of two sinusoidal functions, i.e.

jmnðx,yÞ ¼ sin
mpx

a

� 	
sin

npy

b

� 	
(20)

Here it is assumed that the individual modes are uniformly excited simultaneously and each mode acts as an independent
energy reservoir [21].

The normal velocity distribution for each mode can be decomposed into a continuous spectrum of spatially harmonic,
travelling plane wave components, each having a certain wavenumber vector given by

~V mnðkx,kyÞ ¼

Z a

0

Z b

0
umnjmne�jðkxxþkyyÞ dx dy¼ umn ~jmnðkx,kyÞ (21)

where ~jmn is the Fourier transform of mode shape jmn given by

~jmnðkx,kyÞ ¼
ab

p2mn

ð�1Þme�jm�1

ðm=ðmpÞÞ2�1

" #
ð�1Þne�jw�1

ðw=ðnpÞÞ2�1

" #
(22)

with m¼ kxa, w¼ kyb.
From Eqs. (8) and (16) (for a travelling wave with components in the x and y directions), the sound power radiated by a

mode of a plate can be obtained from integration over wavenumbers ranging from �k to k, given by [4]

Wmn ¼
rc

8p2

Z k

�k

Z ffiffiffiffiffiffiffiffiffiffi
k2�k2

y

p
�

ffiffiffiffiffiffiffiffiffiffi
k2�k2

y

p k

ðk2�k2
x�k2

y Þ
1=2
j ~V mnðkx,kyÞj

2 dkx dky (23)
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Note that only wavenumber components satisfying the condition k2
xþk2

y rk2 and therefore contributing to sound power
radiation have been considered. Using Eqs. (17) and (18) and by substituting Eq. (21), the sound power from a mode of a
perforated plate in terms of non-dimensional wavenumbers ða,bÞ can be expressed as

Wmn ¼
rcjumnj

2

8p2

Z 1

�1

Z ffiffiffiffiffiffiffiffiffi
1�b2
p

�

ffiffiffiffiffiffiffiffiffi
1�b2
p jXða,bÞj2

j ~jmnða,bÞj2

ð1�a2�b2
Þ
1=2

dadb (24)

where ~jmn can be written in terms of m¼ aka and w¼ bkb. The modal radiation efficiency can be calculated from

smn ¼
Wmn

1
2rcð1�tÞS/jvmnj

2S
(25)

where /jvmnj
2S is the spatially averaged squared velocity amplitude in mode (m,n) and S=ab is the total plate area.

This has been averaged over all possible force positions. This is derived from the spatially averaged squared velocity
distribution of a mode expressed as

/jvmnj
2S¼

1

S

Z
S
jvmnðx,yÞj2 dx dy (26)

After averaging over all possible forcing locations (x0,y0)

/jvmnj
2S ¼

1

ab

Z a

0

Z b

0
/jvmnj

2Sdx0 dy0 (27)

Substituting Eq. (19) for each mode for a simply supported plate yields

/jvmnj
2S ¼

jumnj
2

4
(28)

In Eq. (25), the spatially averaged squared velocity has been multiplied by ð1�tÞS, i.e. the solid area of the perforate
which radiates sound into the air. The term ð1�tÞ, however, only has significant effect for high perforation ratio.
Substituting Eqs. (24) and (28) into Eq. (25), the modal radiation efficiency of a perforated plate set in an equally perforated
baffle is given by

smn ¼
1

ð1�tÞSp2

Z 1

�1

Z ffiffiffiffiffiffiffiffiffi
1�b2
p

�

ffiffiffiffiffiffiffiffiffi
1�b2
p jXða,bÞj2

j ~jmnða,bÞj2

ð1�a2�b2
Þ
1=2

dadb (29)

The total radiation efficiency s can be defined as a summation over the contributions of all modes [22]

s¼
P1

m ¼ 1

P1
n ¼ 1 Wmn

rcð1�tÞS
P1

m ¼ 1

P1
n ¼ 1 /jvmnj

2S
¼

P1
m ¼ 1

P1
n ¼ 1 smn½ðo2

mn�o2Þ
2
þZ2o4

mn�
�1P1

m ¼ 1

P1
n ¼ 1½ðo2

mn�o2Þ
2
þZ2o4

mn�
�1

(30)

where Z is the damping loss factor and omn ¼ ðB=rstÞ
1=2
½ðmp=aÞ2þðnp=bÞ2� is the natural frequency with rs the plate

density and B¼ Et3=12ð1�n2Þ the plate bending stiffness in which E is Young’s modulus and n is Poisson’s ratio.

2.4. Unbaffled plate

2.4.1. Governing fundamental equations

Considering now an unbaffled perforated plate, Laulagnet’s model [10] for the sound radiation from an unbaffled plate
is extended to include perforation. Fig. 3 shows a flat thin perforated unbaffled plate with a surface area S located in an
infinite medium. The plate is excited by a harmonic force distribution F(x,y) of angular frequency o. Dpðx,yÞ is the
difference between the acoustic surface pressure on the two sides of the plate defined as

Dpðx,yÞ ¼ p�ðx,yÞ�pþ ðx,yÞ (31)

The equation of motion of a perforated plate with a perforation ratio t excited by the force distribution F and pressure
difference Dp is

B

jo
r4vðx,yÞþ jmsovðx,yÞ ¼ Fðx,yÞþð1�tÞDpðx,yÞ (32)

where B is the bending stiffness, ms ¼ rst is the mass per unit area, v(x,y) is the transverse velocity of the plate and
r4
¼ q4=qx4þ2q4=ðqx2qy2Þþq4=qy4. The bending stiffness and mass per unit area also depend on the extent of perforation

but this is neglected here.
The pressure at a point M in the fluid can be defined by using the Kirchhoff–Helmholtz (K–H) integral

pðMÞ ¼

Z
Sv

pðQ Þ
qGðQ ,MÞ

qnQ
�GðQ ,MÞ

qp

qnQ

� �
dSv (33)

where Q is a point on the plate surface, G is the free-field Green’s function and Sv is the surface area of the volume enclosing
the plate. Therefore the integral is performed over both sides of the plate (the integral over the surface at infinity can be
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neglected). In Eq. (33), the first and second terms correspond to the dipole and monopole source radiation, respectively.
By using the two dimensional spatial Fourier transform, the Green’s function can be expressed as [23]

G¼
j

8p2

Z 1
�1

Z 1
�1

ejkxðx�x0Þejkyðy�y0Þejkzðz�z0Þ

kz
dkx dky (34)

where kz ¼ ðk2�k2
x�k2

y Þ
1=2, Q=(x,y,z) is a point on the plate surface (z=0), M=(x0,y0,z0) is a field point and attention is limited

to the pressure at a point M above the plate (in the half-space z0Z0).
Since the plate thickness is assumed to be very small, the normal velocity is identical on the plate surfaces S+ and S�

and hence qp=qzQ is equal on both sides of the plate. However the sign of the normal vector nQ is reversed so that the
second term in Eq. (33) is zero. Thus by performing the integration over the plate surface, Eq. (33) reduces to

pðMÞjz ¼ 0 ¼�

Z
S
Dp

qGðQ ,MÞ

qzQ
dS (35)

leaving only the dipole term.
For the case of a vibrating perforated plate, applying Euler’s equation to Eq. (35) in the plane of the plate at z=0 gives

qp

qz
ðMÞ

����
z ¼ 0

¼�jrovðMÞ (36)

Substituting Eq. (5)

qp

qz
ðMÞ

����
z ¼ 0

¼�jroðvðMÞð1�tÞþvf ðMÞÞ ¼�jroð1�tÞvðMÞ� jro
zh

DpðMÞ (37)

where, as in Section 2.3, v is the velocity of the plate and vf is the locally averaged fluid motion. Substituting Eq. (32) into
Eq. (37) to eliminate the pressure difference Dp yields

qp

qz
ðMÞ

����
z ¼ 0

¼�jroð1�tÞvðMÞ� jro
zhð1�tÞ

B

jor
4vðx,yÞþ jmsovðx,yÞ�Fðx,yÞ

� �
(38)

Substituting this into Eq. (35)

�jroð1�tÞ2vðMÞ�
jro
zh

B

jo
r4vðMÞþ jmsovðMÞ�FðMÞ

� �
¼�

Z
S

B

jo
r4vðQ Þþ jmsovðQ Þ�FðQ Þ

� �
q2GðQ ,MÞ

qzQqzM
dS (39)

where, compared with [10], the second term on the left-hand side has been introduced by the perforation.

2.4.2. Force excitation in terms of modal series

The plate velocity can again be considered as the summation of plate modes (m,n) as given in Eq. (19). The same is also
applied to the excitation force F which is written as

Fðx,yÞ ¼
X1

m ¼ 1

X1
n ¼ 1

Fmnjmnðx,yÞ (40)
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where Fmn is the modal force amplitude and jmn is the mode shape function. As in Section 2.3, the modal force Fmn is also
assumed to produce equal excitation energy in each mode. Using Eq. (20) it is obtained that

r4jmnðx,yÞ ¼
mso2

mn

B

� �
jmnðx,yÞ (41)

The effect of damping can be included by replacing the plate bending stiffness B by Bð1þ jZÞ. The orthogonality relationship
with mode (p,q) for a simply supported uniform plate givesZ

S
jmnjpq dS¼

S

4
dmpdnq (42)

Writing in terms of the modal series of velocity v and excitation force F, Eq. (39) can be expressed as

�jroð1�tÞ2
X1

m ¼ 1

X1
n ¼ 1

umnjmnðx0,y0Þ�
jro
zh

X1
m ¼ 1

X1
n ¼ 1

B

jo
umnr

4jmnðx0,y0Þþ jmsoumnjmnðx0,y0Þ�Fmnjmnðx0,y0Þ

� �

¼�

Z
S

X1
m ¼ 1

X1
n ¼ 1

B

jo
umnr

4jmnðx,yÞþ jmsoumnjmnðx,yÞ�Fmnjmnðx,yÞ

� �
q2GðQ ,MÞ

qzQqzM
dS (43)

Substituting Eq. (41) to eliminate the terms r4jmn yields

ð1�tÞ2ro2
X1

m ¼ 1

X1
n ¼ 1

umnjmnðx0,y0Þ�
jro
zh

X1
m ¼ 1

X1
n ¼ 1

ðmsðo2
mn�o

2Þumn�joFmnÞjmnðx0,y0Þ

¼�

Z
S

X1
m ¼ 1

X1
n ¼ 1

ðmsðo2
mn�o

2Þumn�joFmnÞjmnðx,yÞ
q2GðQ ,MÞ

qzQqzM
dS (44)

2.4.3. Acoustic cross-modal coupling terms

Using Eq. (42), after multiplying Eq. (44) by jpq and integrating over the plate area

ð1�tÞ2ro2 S

4

� �
upq�

jro
zh

S

4

� �
ðmsðo2

pq�o
2Þupq�joFpqÞ ¼

X1
m ¼ 1

X1
n ¼ 1

ðjoFmn�msðo2
mn�o

2ÞumnÞCpqmn (45)

where

Cpqmn ¼

Z
S

Z
S
jpqðx0,y0Þ

q2G

qzqz0
ðx,x0,y,y0,z¼ z0 ¼ 0Þjmnðx,yÞdx dy dx0 dy0 (46)

Substituting Eq. (34) into Eq. (46) and performing the two integrals over S yields

Cpqmn ¼
j

8p2

Z 1
�1

Z 1
�1

kz ~j�pqðkx,kyÞ ~jmnðkx,kyÞdkx dky (47)

where ~jmn is the Fourier transform of mode shape jmn given as in Eq. (22). After algebraic manipulation, for simply
supported edges, Eq. (47) can be expressed as

Cpqmn ¼
2j

pqmn

ab

p3

� �2 Z 1
0

Z 1
0

kzUOdkx dky (48)

where

U¼
1�ð�1Þpcosm

ððm=ppÞ2�1Þððm=mpÞ2�1Þ
, O¼

1�ð�1Þqcosw
ððw=qpÞ2�1Þððw=npÞ2�1Þ

(49)

with m¼ kxa, w¼ kyb. The lower limit of integration has been changed from �1 to 0 because the integrand, with respect to
kx, is an even function when the mode orders (p,m) are of the same parity. Similarly, with respect to ky, it is an even
function when the mode orders (q,n) are of the same parity. The remaining cases will have Cpqmn=0. After re-arranging
Eq. (45), it can be written in matrix form as

msCðA�Io2Þuþð1�tÞ2ro2 S

4

� �
u�

jroms

zh

S

4

� �
ðA�Io2Þu

¼ joCFþ
ro2

zh

S

4

� �
F (50)

where C is the matrix of complex acoustic coupling terms Cpqmn, u is the vector of modal velocities umn, F is the vector of
modal excitation forces Fmn, I is the identity matrix and A is a diagonal matrix of squared natural frequencies

A¼

o2
11 0 � � � 0

0 o2
12 � � � ^

^ ^ & ^

0 � � � � � � o2
mn

2
66664

3
77775 (51)
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Multiplying Eq. (50) by C�1, i.e. the inverse of matrix C yields

msðA�Io2Þuþro2 S

4

� �
C�1

ð1�tÞ2I�
jms

ozh
ðA�Io2Þ

� �
u¼ joIþ

ro2

zh

S

4

� �
C�1

� �
F (52)

Eq. (52) can be simplified by taking only the self-modal coupling terms of Eq. (48). The inverse of the cross-modal
coupling terms C�1 can then be replaced by a diagonal matrix of terms 1/Cpqpq. Such an approximation works well for a
baffled plate [24], particularly when the average result over different force positions is considered [22]. It has been shown
that this approximation can also be used for the case of an unbaffled plate immersed in a light fluid such as air. For a heavy
fluid loading such as water, the off-diagonal terms become important, particularly for the radiated sound power [10].

By neglecting the cross-modal coupling contributions in the sound radiation, this can be approximated by

Mpqðo2
pq�o

2Þupqþro2 S

4

� �2 1

Cpqpq

� �
ð1�tÞ2�4jMpq

Sozh
ðo2

pq�o
2Þ

� �
upq ¼ joþ ro2

zh

S

4

� �
1

Cpqpq

� �
S

4

� �
Fpq (53)

where Mpq=ms(S/4) is the generalized mass for mode (p,q). The case of the unperforated (solid) unbaffled plate, as in [10],
can be recovered by introducing very large zh and setting t¼ 0.

Eq. (53) can be solved to find the modal complex velocity amplitude upq. From this, the spatially averaged squared
velocity amplitude of a plate mode /jvpqj

2S is obtained (see Eq. (28)).

2.4.4. The acoustic sound power and radiation efficiency in terms of modal summation

The acoustic pressure is determined from the pressure difference Dpðx,yÞ between the two sides of the plate surface.
The normal vector n is pointing away from the plate as seen in Fig. 3. Therefore the total radiated sound power from both
sides of the plate can be defined as

W ¼
1

2

Z
S
R

X1
p ¼ 1

X1
q ¼ 1

pþ ðx,yÞv�pqðx,yÞ � n dSþ þp�ðx,yÞv�pqðx,yÞ � n dS�

( )

¼�
1

2

Z
S
R

X1
p ¼ 1

X1
q ¼ 1

Dpðx,yÞv�pqðx,yÞ

( )
dS (54)

where * denotes complex conjugate.
To obtain a convenient calculation, the pressure difference Dpðx,yÞ can also be written in terms of a series of plate modes [10]

Dpðx,yÞ ¼
X1

m ¼ 1

X1
n ¼ 1

pmnjmnðx,yÞ (55)

where pmn are the corresponding amplitudes. Therefore by using the orthogonality relationship from Eq. (42), the radiated sound
power can be written as

W ¼�
1

2

Z
S
R

X1
m ¼ 1

X1
n ¼ 1

pmnjmn �
X1
p ¼ 1

X1
q ¼ 1

u�pqjpq

( )
dS¼�

1

2

S

4

� �
R

X1
p ¼ 1

X1
q ¼ 1

ppqu�pq

( )
(56)

To find ppq, Eq. (32) can be used with Eqs. (41) and (55) to give

X1
m ¼ 1

X1
n ¼ 1

msðo2
mn�o

2Þumnjmnðx,yÞ ¼ jo
X1

m ¼ 1

X1
n ¼ 1

Fmnjmnðx,yÞþ joð1�tÞ
X1

m ¼ 1

X1
n ¼ 1

pmnjmnðx,yÞ (57)

Again, applying the orthogonality relationship (Eq. (42)) yields

msðo2
pq�o

2Þupq ¼ joðFpqþð1�tÞppqÞ (58)

which allows ppq to be found. The radiated power for each mode can be obtained by substituting ppq from Eq. (58) into Eq. (56)

Wpq ¼
S

8ð1�tÞ
RfðFpq�msðo2

pq�o
2Þupq=joÞu�pqg (59)

The total radiation efficiency can be calculated using Eq. (30).
The radiation efficiency of the unbaffled plate takes into account the fluid loading on both sides of the plate. Therefore

the total surface area of the plate S=2ab should be used in Eq. (30).

3. Results

3.1. Radiation efficiency results

Fig. 4 shows the radiation efficiencies of baffled and unbaffled solid (unperforated) plates. These are obtained by setting
a very high value of zh and t¼ 0 in both models. These results are for an example aluminium plate of dimensions 0.65 �0.5
�0.003 m with Z¼ 0:1, excited by a unit point force and represents the average over force positions over the plate surface.
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The calculation is made up to 10 kHz involving all modes with mr25 and nr20. The material properties are taken as
E=7.1�1010 N/m2, rs ¼ 2700 kg=m3, n¼ 0:33.

To help interpret these results, the frequency region can be divided into the fundamental mode region, below the first
plate resonance frequency f1,1, the corner mode region between f1,1 and the frequency fe given by [4,25]

fe ¼
3c

P
(60)

where P=2(a+b) is the plate perimeter, the edge mode region between fe and the critical frequency fc,

fc ¼
c2

2p
rst

B

� �1=2

(61)

and the supersonic region above fc.
The two results show different levels and trends of the radiation efficiency. The slopes at very low frequency, i.e. below the

first resonance frequency (f1,1=46 Hz) are 20 and 40 dB/decade, showing the characteristic of monopole and dipole source
radiation for baffled and unbaffled plates, respectively. In the corner mode region between f1,1 and fe, the result increases by
roughly 10 dB/decade for the baffled case and 30 dB/decade for the unbaffled case. Both curves increase above fe in the edge
mode region towards a peak at the critical frequency fc=4 kHz. The whole plate surface then radiates sound effectively above
the critical frequency (the supersonic region) where the radiation efficiency converges to unity s¼ 1 at very high frequency.

In Fig. 5 the radiation efficiencies are shown for the same plate but with 5 percent perforation ratio and 5 mm diameter
holes. Results are shown from both baffled and unbaffled models. The average radiation efficiency is plotted together with
the modal radiation efficiencies in each case. It is interesting to note that the slope of the radiation efficiency for the baffled
plate changes to 40 dB/decade below the first resonance frequency as shown in Fig. 5(a). This is due to the perforation of
the baffle, which opens the ‘communication’ of the sound fields between the front and the back of the plate and provides
cancellation of the monopole sources. For the unbaffled plate in Fig. 5(b), the trend of the slope is the same as for the solid
plate in Fig. 4 except that there is a reduction in the radiation efficiency. It is also lower than that of the baffled plate in
Fig. 5(a). It can be seen that for both cases the result at very low frequencies in the fundamental mode region is dominated
by mode (1,1), which is also the case for the solid plate.

Results for other perforation ratios with 10 mm hole diameter are shown in Fig. 6, plotted in terms of the radiation
index, 10 log10 s. This shows that the sound radiation is reduced as the perforation ratio is increased. As already mentioned,
perforation gives a significant reduction in the case of a plate set in an equally perforated baffle particularly at very low
frequency. At these frequencies, where the acoustic wavelength is greater than the plate dimensions, perforation of the
baffle has a greater effect on the sound reduction than perforation of the plate itself. This is why a large reduction can be
seen at low frequency where the plate exhibits behaviour that is closer to an unbaffled plate.

For the unbaffled plate, perforation leads to an almost constant reduction in radiation index for frequencies up to the
corner mode region (which commences at 450 Hz in this case). For both cases, the perforation effect reduces as frequency
increases. This can be expected as the impedance of the hole is proportional to frequency (see Eq. (4)). Therefore at high
frequency, the fluid in the holes has a very high mass-like impedance. This mass does not move sufficiently to compensate
for the volume sources adjacent to the hole. The cancellation of radiated sound thus becomes ineffective.

Fig. 7 shows the difference between the radiation index of baffled ðsbf Þ and unbaffled ðsubf Þ perforated plates on a dB
scale, i.e. 10 log10ðsubf=sbf Þ. It is seen that the sound radiation for the plate in an equally perforated baffle is less than for
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the unbaffled plate at very high perforation ratios (40 percent). However, for moderate perforation (20 percent), the
difference is within 71.5 dB which shows that both models show similar results. For smaller perforation ratios
the perforated baffle model gives an over-prediction of the radiation index relative to the unbaffled plate model as the
perforation of the baffle is insufficient to allow full ‘communication’ between the two sides of the plate.
3.2. Effect of perforation

The reduction in sound level due to perforation can be defined in terms of the effect of perforation Y, given by

Y¼ 10 log10

Wp

Ws

� �
(62)

where Wp and Ws are the radiated sound power for the perforated plate and solid or unperforated plate, respectively. This
is related to the insertion loss (IL) commonly used in noise control by Y¼�IL. For moderate perforation, where the term
1�t can be ignored, the effect of perforation on sound radiation can be approximated by the ratio of the radiation
efficiencies of perforated ðspÞ and solid plates ðssÞ, i.e. Y¼ 10 log10ðsp=ssÞ. However, for large t this is no longer correct.
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Fig. 8 presents the effect of perforation for constant hole diameter (left-hand side) and constant perforation ratio (right-
hand side) for both models. It can be seen that below 450 Hz, both cases show different trends of the effect of perforation.
Meanwhile above 450 Hz, the trend is almost similar. For the baffled perforated plate, due to the perforated baffle, the
effect of perforation increases by 20 dB/decade at low frequency before approaching 0 dB at high frequency. For the case of
the unbaffled perforated plate, the effect of perforation is almost independent of frequency in the fundamental and corner
mode regions ðo450 HzÞ and then increases in the edge mode region as the frequency increases. The effect again
approaches 0 dB at high frequency. Figs. 8(a) and (c) show that sound radiation is reduced by increasing the perforation
ratio, while Figs. 8(b) and (d) show that for a constant perforation ratio, the radiated sound can be further reduced by
reducing the hole size.

It can be seen from these results that the effect of perforation is reduced above the critical frequency, in this case 4 kHz.
However, it does not tend to 0 at the critical frequency but can still be significant at higher frequencies than this.

From Eq. (7), for a plate where the plate thickness is much smaller than the hole radius, t5d0, the non-dimensional
specific acoustic reactance is dominated by the end correction and can be expressed as h¼ ð8k=3pÞd0=t. Consequently, the
effect of perforation is controlled by the factor d0=t. As seen from Fig. 8, for the same values of d0=t, the effect of the
perforation is almost equal. For example d0=10 mm, t¼ 10 percent and d0=20 mm, t¼ 20 percent give similar results in
each model (roughly 1.5 dB difference). However, the perforation ratio should not be too large as this will affect the area of
the radiating surface.
4. Experimental validation

4.1. Experimental arrangement

Measurements have been conducted to determine the radiation efficiency of a number of perforated aluminium plates
with two different thicknesses and various perforation ratios. As seen from Eq. (30), the experiment requires mechanical
measurements to obtain the spatially averaged squared velocity /jvmnj

2S and also acoustical measurements for the
radiated sound power W.

The realization of an ideal simply supported boundary condition in practice is not easy. However, several attempts have
been made in previous measurements involving this type of boundary condition [26,27]. For this purpose, to
support aluminium plates having dimensions of 0.4�0.3 m with 1.5 and 3 mm thicknesses, a 460�362 mm frame
with 44 mm height was constructed (see Fig. 9). The experiments were also conducted for free–free boundary
conditions. For this, the plates were hung using soft ropes from a stiff frame. As the plates were very lightly damped, thin
self-adhesive damping patches, made of a rubber material, were attached to parts of one side of the plates to increase their
damping.

The mechanical measurements were obtained in terms of mobility with the plate excited by a shaker. The velocity was
measured using a scanning laser vibrometer at 81 locations over the plate surface, while the excitation force was measured
by a force transducer. From the mobility measurements, the damping loss factors for all the plates were found to be around
Z¼ 0:01 on average.
4.2. Reciprocity technique

The acoustical measurement was conducted using a reciprocity technique in a reverberant chamber, where the plate
was excited by a diffuse broadband sound field. This technique was chosen to avoid noise from the shaker which could
otherwise contaminate the measured sound power. The plate acceleration was measured by an accelerometer at the same
point as the force was applied in the mobility measurement.
~110 mm

front

back
aluminium frame

plate

screw

thin shim

Fig. 9. Mounting arrangement of simply supported plate showing the sound path at the frame edges.
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If the direct method experiment is conducted in a reverberant chamber, the radiated power W normalized by the
mean-square force F2 is given by

W

F2
¼

Sa
4rc

p2

F2

* +
(63)

where Sa is the room absorption, r is the air density, c is the sound speed and /p2S is the spatially averaged mean square
pressure in the room due to radiation by the plate. Using the principle of reciprocity, Eq. (63) can then be written as

W

F2
¼

Sa
4rc

v2
Q

Q2

* +
(64)

where v2
Q is the mean-square plate velocity at the point of excitation (in the direct experiment) due to the sound

excitation from a monopole source of mean-square volume velocity Q2 from the sound source (in the reciprocal
experiment) which is located at the positions used for the microphones in the direct experiment. The spatial average is
taken over different source positions. The mean-square volume velocity Q2 of a source in a reverberant field at frequency o
is given by [5]

Q2 ¼
Sap
r2o2

p2
Q

D E
(65)

where /p2
Q S is the mean square pressure in the room due to this source. Substituting this into Eq. (64) yields

W

F2
¼

/a2
Q S

/p2
Q S

r
4pc

(66)

where aQ ¼ jovQ is the plate acceleration. In Eq. (66), the mean square acceleration of the plate a2
Q is averaged over sound

source positions in the room.
4.3. Measured radiation efficiencies

Fig. 10 presents the radiation index for the 1.5 and 3 mm thick simply supported plates, solid and perforated, along with
corresponding predictions in one-third octave bands. Although the measured and predicted results show similar trends,
it can be seen that the measured radiation efficiencies exceed the theoretical predictions by about 5–10 dB. However, the
measured results show good agreement, particularly at high frequency, with a baffled model. For the perforated plate
results, this is calculated using a discrete sources approach for a perforated plate in a rigid baffle [5]. This model can only be
used for a plate with a small hole density.

When a vibrating plate radiates sound in an unbaffled condition, the radiated sound from one side can ‘communicate’
with the radiated sound from the other side of the plate. This communication, particularly around the plate edges for a
solid plate, creates some cancellation of the sound radiation (see also Section 3.1). The effectiveness of this cancellation
depends on the acoustic wavelength; the longer the wavelength the more effective the cancellation. Conversely, in the
baffled condition this sort of communication is not possible leading to a higher radiation efficiency.

For the frame used in the experiment, the path length for the sound to propagate from one side of the plate to the
other is approximately 110 mm as shown in Fig. 9. In order for the plate to be considered as unbaffled, this has to
be less than about half an acoustic wavelength. This is only the case for frequencies less than approximately 1.5 kHz.
Above this frequency, the radiated sound from the back of the plate is blocked by the frame and the plate
becomes effectively baffled. This may explain the disagreement between the measured results and the unbaffled
model, at least above 1 kHz. Moreover, the nature of the radiated sound from the back of the plate is also modified
by the frame, so the sound radiation from the back will be more directional than that from the front. This could also reduce
the effectiveness of the cancellation process. Hence the plate may be effectively baffled at frequencies lower than 1.5 kHz.
Thus it is clear that the frame used for the simply supported boundary conditions does not correspond to an unbaffled
situation.

Fig. 11 shows a comparison of the radiation index from measurements for the free–free boundary conditions with
that from the analytical calculation for a simply supported plate. It can be seen that a very good agreement is found
between the theoretical and the measured results. This raises an interesting finding. It is suggested that, for the case of an
unbaffled plate, the radiated sound is relatively insensitive to the edge conditions. To support this it may be observed that
calculation of the radiation efficiency of an unbaffled plate with guided boundary conditions shows a difference of less than
2 dB in the corner and edge mode regions compared with that for simply supported edges [5]. Ideally the model developed
here for an unbaffled plate should be extended to other plate boundary conditions but this is beyond the scope of the
present paper.
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Fig. 10. Measured radiation efficiencies of simply supported unbaffled plates (� � �J � � �): �� unbaffled model, — baffled model; (a) t¼ 1:5 mm,

unperforated, (b) t=3 mm, unperforated, (c) t=3 mm, d0=15 mm; t¼ 7 percent and (d) t=3 mm, d0=25 mm; t¼ 20 percent.
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4.4. Measured effect of perforation

Although there are differences between measured results and the model for simply supported plate edges, it is
worthwhile to consider the results in the form of the effect of perforation Y. Fig. 12 compares the effect from analytical
calculations with that from measured data of 1.5 and 3 mm thick perforated plates. For the 3 mm plates, the measured data
are derived from those presented in Figs. 10(b)–(d) and an additional result for the plate with 10 mm hole diameter and
20 percent perforation ratio. For both thicknesses, the measured data from the simply supported plate experiment can be
seen to agree reasonably well with the trend of the model results with roughly 2–5 dB fluctuations above 800 Hz. However,
at lower frequencies the fluctuations are greater.

Comparisons are shown for the effect of perforation for the free–free plates in Fig. 13 from the corresponding results in
Fig. 11 and also for plates with other perforation configurations. These results show a satisfactory agreement with the
predictions, particularly above 400 Hz. The measured results follow the trend of the predictions up to the critical
frequency. However, for 1.5 mm thick plates having 5 and 12 percent perforation ratio (Figs. 13(a) and (b)), a disagreement
of around 3–5 dB can be seen above 800 Hz. For Fig. 13(b) in particular, this comes from the measured radiation efficiency
for the solid plate in Fig. 11(a) where between 800 Hz and 3 kHz the measured result is 1–2 dB lower than the prediction.
Conversely, the perforated result (Fig. 11(c)) in the same frequency range is 2–3 dB higher than the prediction, leading to a
higher effect of perforation than given by the analytical calculation. This illustrates that it is not easy to obtain a reliable
result for Y because one has to deal with four input errors, i.e. from the sound power and the mobility measurements on
both the perforated and the unperforated plates. These errors result in high fluctuations, particularly below 400 Hz where
the radiation efficiencies are low, making them subject to noise contamination.
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Fig. 11. Measured radiation efficiencies of unbaffled free–free plates (�&�): — unbaffled model (simply supported); (a) t=1.5 mm, unperforated;

(b) t=3 mm, unperforated; (c) t=1.5 mm, d0=8 mm; t¼ 12 percent, (d) t=1.5 mm, d0=10 mm; t¼ 19 percent, (e) t=3 mm, d0=10 mm; t¼ 20 percent and

(f) t=3 mm, d0=15 mm; t¼ 7 percent.
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Fig. 12. Measured effect of perforation on unbaffled simply supported perforated plates (� � �& � � �): — theoretical; (a) t=1.5 mm, d0=5 mm, t¼ 5

percent; (b) t=1.5 mm, d0=8 mm, t¼ 12 percent; (c) t=1.5 mm, d0=15 mm, t¼ 44 percent, (d) t=3 mm, d0=10 mm, t¼ 20 percent, (e) t=3 mm,

d0 ¼ 15 mm, t¼ 7 percent and (f) t=3 mm, d0 ¼ 25 mm; t¼ 20 percent.
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Fig. 13. Measured effect of perforation on unbaffled free-free perforated plates (� � �& � � �): — theoretical (simply supported); (a) t=1.5 mm, d0 ¼ 5 mm,

t¼ 5 percent; (b) t=1.5 mm, d0 ¼ 8 mm, t¼ 12 percent; (c) t=1.5 mm, d0 ¼ 10 mm, t¼ 19 percent; (d) t=3 mm, d0 ¼ 5 mm, t¼ 20 percent; (e) t=3 mm,

d0 ¼ 15 mm; t¼ 7 percent and (f) t=3 mm, d0 ¼ 25 mm; t¼ 20 percent.
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Fig. 14. Comparison of the radiation indices from analytical calculation (—) with those from previous measured data [28] (�B�); (a) unperforated,

(b) d0 ¼ 5:6 mm; t¼ 5:7 percent, (c) d0 ¼ 7:1 mm; t¼ 9:4 percent and (d) d0 ¼ 8:8 mm; t¼ 14:1 percent (mild steel; 0.3�0.3 �0.0012 m, Z¼ 0:001).
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4.5. Comparison with existing measured data

To complement the validation of the model, comparison is made with previous measured data. The data were
obtained in experiments made by Pierri [28] for 1.22 mm thick perforated steel plates having dimensions of 0.3�0.3 m
(also given in [4]). The measurement of the radiation efficiency was conducted using the direct method, where the plate
was excited by a broadband force from a shaker and the radiated sound pressure was measured in a reverberant room.
The plate sample was supported by the edges with very soft foam rubber so that free–free boundary conditions could be
assumed.

Fig. 14 shows a comparison of the measured radiation index with that from the model. The damping loss factor is not
known but in the calculation it is assumed to be very low, i.e. Z¼ 0:001. It can be seen that the measured results agree very
well with the model, including the case of the unperforated plate.
5. Approximate formula for effect of perforation

In practice, rather than the absolute level of sound power (or radiation efficiency) of a perforated structure, the level of
noise reduction due to perforation is often of interest. Therefore in this section a simple empirical formula is derived that
can be used as quantitative guidance for an engineering application to predict the noise reduction.
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5.1. Edge mode region

Fig. 15 plots the predicted effect of perforation for the various cases considered against the non-dimensional specific
acoustic reactance h for different plate thicknesses. It can be seen that the curves collapse together with the same slope of
15 dB/decade in the edge mode region. Below the edge mode region, the results are independent of h but vary with plate
dimensions and perforation ratio.

In the edge mode region, up to half the critical frequency, the effect of perforation Y can be written as

Y¼ 15 log10½hð1�tÞ��10, feo f o fc=2 (67)

where fe is the starting frequency of the edge mode region and fc is the critical frequency as given in Eqs. (60) and (61),
respectively. Note that this is valid only for reductions of more than 5 dB. For smaller reductions, the curve becomes less
steep as it approaches 0 dB.
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Fig. 18. Effect of perforation on sound power radiation of a simply supported perforated unbaffled plate: 0.65 �0.5 �0.003 m; (a) t¼ 5 percent,

(b) t¼ 10 percent, (c) t¼ 20 percent, (d) t¼ 40 percent; �� analytical, — prediction (aluminium plate with Z¼ 0:1, d0 ¼ 5 mm).
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5.2. Fundamental and corner mode regions

From Figs. 8(c) and (d) and Fig. 15, as the effect shows almost constant values at low frequency, at least up to end of the
corner mode region, an approximate formula can be developed to predict the effect of perforation in this frequency region.

Fig. 16 plots the effect of perforation at low frequency for plates with the same dimensions but different thickness and
perforation ratio to show the increment in the Y as the plate thickness increases. This is plotted against h/k, which is
independent of frequency. The constant values over the corner mode region are, in this case, taken from the average value
between 10 and 30 Hz in each case. It is seen that the perforation of thinner plates has a greater effect of reducing the sound
radiation. This is reflected in the dependence of h on t (see Eq. (7)). The result also shows that the trend has a dependency of
about 19 dB/decade. Therefore a simple curve fit can be obtained as a function of the non-dimensional acoustic reactance h

Y� 19 log10
h

k

� �
þ5, f o fe (68)

The effect of perforation at low frequency for different dimensions with the same plate thickness is shown in Fig. 17 for
perforation ratios of 20 and 40 percent. For the 20 percent perforation ratio, the dependence on the plate dimensions a and
b can be written as

Y��8:5 log10
1

1=a2þ1=b2þ1=2ab

� �
�25:5, f o fe (69)
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Fig. 19. Effect of perforation on sound power radiation of a simply supported perforated unbaffled plate: t¼ 25 percent; (a) 0.8�0.4�0.003 m, (b)

0.65�0.4�0.002 m, (c) 0.39�0.3�0.005 m and (d) 0.9�0.3�0.003 m; �� analytical, — prediction (aluminium plate with Z¼ 0:1, d0 ¼ 8 mm).
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where a and b are given in metres (m). The results for 10 and 40 percent perforations have similar gradients to that for
20 percent, but different constant terms.

These two equations (Eqs. (68) and (69)) can be combined to give a general equation for the effect of perforation at low
frequency:

Y¼�8:5 log10
1

1=a2þ1=b2þ1=2ab

� �
þ19 log10

h

k

� �
�2, f o fe (70)

Figs. 18 and 19 show a comparison of the effect of perforation to test the validity of Eqs. (67) and (70) for different
perforation ratios, plate dimensions and thickness. Results are shown in Fig. 18 for the same plate size with 5 mm hole
diameter and different perforation ratios. Fig. 19 shows the effect for different plate size with 8 mm hole diameter and 25
percent perforation ratio. For clarity, these are plotted in one-third octave bands. The results show good agreement over
the frequency range up to half the critical frequency. However in the corner mode region, the approximate model does not
give such a good estimation. This is due to large fluctuations in this region both from the radiation efficiency of the
perforated plate and that of the solid plate, which then also lead to large fluctuations in the ‘effect of perforation’ curve.
Nevertheless the differences in this region are only 2–3 dB at most and the model can be used to good effect. Fig. 18(a) also
shows an over-prediction just before hc/2 as the sound reduction is less than 5 dB in that frequency range (see Section 5.1).
Fig. 20 presents a comparison for two extreme values of damping loss factor (Z¼ 0:001 and 0.2) again showing good
agreement with the model.

6. Conclusions

The sound radiation from a perforated plate has first been calculated using an approach from Fahy and Thompson [2] in
which the plate is assumed to be set in a rigid perforated baffle. The model is based on the assumption that the baffle has
similar perforation to the plate in order to have a continuous impedance across the plate and the baffle for convenience of
calculation. It has been shown that, according to this model, the radiation efficiency of the baffled plate is considerably
reduced at low frequency due to the perforation. However, this is more due to the effect of perforation of the baffle rather
than due to perforation of the plate itself.

A model for an unbaffled perforated plate has therefore been developed by extending Laulagnet’s model for the
radiation efficiency of an unbaffled solid plate [10]. The perforation leads to a reduction in the radiation efficiency which is
constant at low frequencies (up to the corner mode region) and decreases as the frequency approaches the critical
frequency.

Comparing the results from the two models, it has been found that the simpler model can be used to predict the
radiation for the unbaffled case fairly reliably for moderate perforation ratios (around 20 percent). This approach has the
advantage of a much reduced computational effort.

It is found from both models that the sound radiation reduces as the perforation ratio is increased or the hole size is
reduced. The effect also depends on the plate thickness and dimensions. For only 10 percent perforation ratio and 10 mm
diameter holes, the sound radiation can be reduced by 10–15 dB at low frequencies, which illustrates the effectiveness of
perforation as a noise control measure. An approximate formula to predict the effect of perforation has also been proposed
which can be used for frequencies up to half the critical frequency.
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Comparison of the model with experimental results for a series of freely suspended perforated plates gives a good
agreement, even though the model has been based on simply supported boundary conditions.
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[2] F.J. Fahy, D.J. Thompson, The effect of perforation on the radiation efficiency of vibrating plates, Proceedings of the Institute of Acoustics 26 (2004).
[3] D.Y. Maa, Theory and design of microperforated panel sound absorbing constructions, Scientia Sinica 18 (1975) 55–71 (in Chinese).
[4] F.J. Fahy, P. Gardonio, Sound and Structural Vibration: Radiation, Transmission and Response, second ed., Academic Press, London, 2006.
[5] A. Putra, Sound Radiation from Perforated Plates, Ph.D. Thesis, ISVR, University of Southampton, 2008.
[6] E.G. Williams, Numerical evaluation of the radiation from unbaffled, finite plates using the FFT, Journal of the Acoustical Society of America 74 (1983)

343–347.
[7] N. Atalla, J. Nicolas, C. Gauthier, Acoustic radiation of an unbaffled vibrating plate with general elastic boundary conditions, Journal of the Acoustical

Society of America 99 (1996) 1484–1494.
[8] C.H. Oppenheimer, S. Dubrowsky, A radiation efficiency for unbaffled plates with experimental validation, Journal of Sound and Vibration 199 (1997)

473–489.
[9] H. Nelisse, O. Beslin, J. Nicolas, A generalized approach for the acoustic radiation from a baffled or unbaffled plate with arbitrary boundary conditions

immersed in a light or heavy fluid, Journal of Sound and Vibration 211 (1998) 207–225.
[10] B. Laulagnet, Sound radiation by a simply supported unbaffled plate, Journal of the Acoustical Society of America 103 (1998) 2451–2462.
[11] M.H.A. Janssens, W.J. van Vliet, Noise from steel bridges: research into the effect of perforations of bridge components, Technical Report, TNO Report

TPD-HAG-RPT-960057, 1996 (in Dutch).
[12] D. Takahashi, M. Tanaka, Flexural vibration of perforated plates and porous elastic materials under acoustic loading, Journal of the Acoustical Society of

America 112 (2002) 1456–1464.
[13] M. Toyoda, D. Takahashi, Reduction of acoustic radiation by impedance control with a perforated absorber system, Journal of Sound and Vibration 286

(2005) 601–614.
[14] M. Toyoda, M. Tanaka, D. Takahashi, Reduction of acoustic radiation by perforated board and honeycomb layer systems, Applied Acoustics 68 (2007)

71–85.
[15] D.Y. Maa, Microperforated panel wideband absorber, Noise Control Engineering Journal (1987) 77–84.
[16] T. Dupont, G. Pavic, B. Laulagnet, Acoustic properties of lightweight micro-perforated plate systems, Acta Acustica United with Acustica 89 (2003)

201–212.
[17] Y.Y. Lee, E.W.M. Lee, C.F. Ng, Sound absorption of a finite flexible micro-perforated panel backed by an air cavity, Journal of Sound and Vibration 287

(2005) 227–243.
[18] K. Sakagami, M. Morimoto, W. Koike, A numerical study of double-leaf microperforated panel absorbers, Applied Acoustics 67 (2006) 609–619.
[19] A.D. Pierce, Acoustics, Acoustical Society of America, Melville, NY, 1989.
[21] L. Cremer, M. Heckl, B.A.T. Petersson, Structure-borne Sound, third ed., Springer, Berlin, 2005.
[22] G. Xie, D.J. Thompson, C.J.C. Jones, The radiation efficiency of baffled plates and strips, Journal of Sound and Vibration 280 (2005) 181–209.
[23] M.C.M. Wright, Mathematics of Acoustics, Imperial College Press, London, 2005.
[24] W.L. Li, H.J. Gibeling, Determination of the mutual radiation resistances of a rectangular plate and their impact on the radiated sound power, Journal

of Sound and Vibration 229 (2000) 1213–1233.
[25] L.L. Beranek, Noise and Vibration Control, McGraw-Hill, New York, 1971.
[26] J.B. Ochs, J.C. Snowdown, Transmissibility across simply supported thin plates. I. Rectangular and square plates with and without damping layers,

Journal of the Acoustical Society of America 58 (1975) 832–840.
[27] O. Lacour, M.A. Galland, D. Thenail, Preliminary experiments on noise reduction in cavities using active impedance changes, Journal of Sound and

Vibration 230 (2000) 69–99.
[28] R.A. Pierri, Study of a Dynamic Absorber for Reducing the Vibration and Noise Radiation of Plate-like Structures, M.Sc. Dissertation, ISVR, University

of Southampton, 1977.


	Sound radiation from perforated plates
	Introduction
	Theory
	Hole acoustic impedance
	Mean particle velocity
	Baffled plate
	Equally perforated baffle
	The acoustic sound power and radiation efficiency in terms of modal summation

	Unbaffled plate
	Governing fundamental equations
	Force excitation in terms of modal series
	Acoustic cross-modal coupling terms
	The acoustic sound power and radiation efficiency in terms of modal summation


	Results
	Radiation efficiency results
	Effect of perforation

	Experimental validation
	Experimental arrangement
	Reciprocity technique
	Measured radiation efficiencies
	Measured effect of perforation
	Comparison with existing measured data

	Approximate formula for effect of perforation
	Edge mode region
	Fundamental and corner mode regions

	Conclusions
	References




